1/(3x+1)^2+5=6/3x+1

Simple and best practice solution for 1/(3x+1)^2+5=6/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(3x+1)^2+5=6/3x+1 equation:



1/(3x+1)^2+5=6/3x+1
We move all terms to the left:
1/(3x+1)^2+5-(6/3x+1)=0
Domain of the equation: (3x+1)^2!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
1/(3x+1)^2-6/3x-1+5=0
We calculate fractions
3x/((3x+1)^2*3x)+(-6*(3x+1)^2)/((3x+1)^2*3x)-1+5=0
We calculate terms in parentheses: +(-6*(3x+1)^2)/((3x+1)^2*3x), so:
-6*(3x+1)^2)/((3x+1)^2*3x
We multiply all the terms by the denominator
-6*(3x+1)^2)
We multiply parentheses
-18x-
We add all the numbers together, and all the variables
-18x
Back to the equation:
+(-18x)
We add all the numbers together, and all the variables
3x/((3x+1)^2*3x)+(-18x)+4=0
We get rid of parentheses
3x/((3x+1)^2*3x)-18x+4=0
We multiply all the terms by the denominator
3x-18x*((3x+1)^2*3x)+4*((3x+1)^2*3x)=0

See similar equations:

| 4(2x-1)=5(4x-8) | | 2(v+1)=-3(4v-4)+2v | | .25x+10=42.50 | | 3y+5y-2=6 | | T=5+4.61s | | 3x–6=21 | | (x+4/x+4)-(x-4/x+4)=(24/x^2-16) | | 14w+11-8w=-37w= | | -8m=7–7m | | 2x*6=6x*2 | | 16y=88 | | 4x-1=3x5 | | 3(a+5)+6a=3a+3 | | 11/6=(p+4)/12 | | 6k−2=−20 | | .23=(x-2.823)*(x+0.956) | | (x^2-x-6)/6=102 | | -8(6+2p)=-144 | | 8.6+4.4x-11=54 | | 8n-7n=6 | | 125,000+16x=250,000+14x | | 3.5x=+10 | | -7h=20 | | 4x-2x+9=9 | | -3u+3=-24 | | 12=-6y+2(y-6) | | 4x-2x+9=91 | | 5(x+1)-8=5x(2-4) | | 6n−7=11 | | 26+2y-8=13y-12-5y | | |p-4|=|2p-3| | | -55/48=-4/3x+9/4x |

Equations solver categories